
BALK : Bandwidth Autosetting for SVM with
Local Kernels

Application to data on incomplete grids ?

Loosli Gaëlle1, Deffuant Guillaume1, Stéphane Canu2

1 Cemagref, Laboratoire d’Ingénierie des Systèmes Complexes,
24 avenue des Landais, 63172 Aubière, France

prenom.nom@cemagref.fr
2 LITIS, Laboratoire d’Informatique, Traitement de l’Information et Signal,

Avenue de l’Université, 76800 Saint Etienne du Rouvray, France
scanu@insa-rouen.fr

Résumé : This paper focuses on the use of Support Vector Machines (SVM)
when learning data located on incomplete grids. We identify here two typical be-
haviours to be avoided, that we call holes. Holes are regions of the space with no
training data where the decision changes. We propose a novel algorithm which
aims at preventing holes to appear. It automatically selects the local kernel band-
width during training. We provide hard-margin and soft-margin versions and se-
veral experimental results. Even though our method is designed for a specific ap-
plication, it turns out that it can be applied to more general problems. Mots-clés
: SVM, Incomplete grids, hyper-parameters

1 Introduction
This paper presents a new method to solve Support Vector Machines and select the

local kernel bandwidth at the same time. We called this method BALK (Bandwidth
Autosetting for Local Kernel SVM). This first version of BALK is dedicated to a par-
ticular configuration of the dataset : we are interested in solving the SVM when points
are located on an incomplete grid of fixed step size ε. Solving this kind of problem is
useful in several applications where one needs to approximate a shape in a space from
points labelled "inside" or "outside" the shape. SVM are already used in those contexts
(for instance Deffuant et al. (2007); Lagoudakis & Parr (2003); Deheeger & Lemaire
(2007)). One problem of using SVM is the need for setting hyper-parameters. When
learning on a grid, the number of points grows exponentially with the dimension D of
the grid and using methods such as cross-validation becomes unfeasible in a reasonable
time. Hence it is not rare to see applications where hyper-parameters are set based on the

?This research was supported by the European project PATRES (NEST-043268).



CAp 2008

feeling of the practitioner. We propose here to provide a convenient tool that addresses
this issue.

1.1 Viability kernel

We briefly describe first the problem that motivated this research direction. The via-
bility theory aims at controlling a dynamical system such that it remains in the set of
admissible states called K, the viability constraints set. In Aubin (1991), the author
defines the concept of viable state, which is a state for which there exists at least one
control function that allows to remain in K indefinitely. The set of all viable states is
called the viability kernel (which has no relation with SVM kernels). The key point is
to be able to determine this viability kernel for a given dynamic system, accurately and
efficiently.

The viability theory comes with an algorithm to find the viability kernel. However,
the result is an ensemble of points and not a function. In Deffuant et al. (2007), the
authors propose to use SVM to find the separating function. Their algorithm is iterative,
corresponding to time steps of the dynamical system. At the beginning, all points are
positive, i.e. they are all considered as viable. Each step starts by training a SVM on the
labelled points of the grid. Then, the SVM frontier is used together with the dynamics
to determine wether a control can be found to stay inside K. If not, the label of the
corresponding point is set to minus. Otherwise is remains positive. The iterations go on
until no label is changed. The algorithm is also adapted to active learning since datasets
are huge and labels expensive to compute. Doing so, they face a problem we called
here holes. Because of the active learning scheme, there are large parts of the space
without any training point and in those areas, some SVM frontiers may appear without
any support vector to support them. Those holes give wrong controls and all following
steps are wrong.

This paper aims at giving tools to set SVM hyper-parameters such that holes are
avoided. By definition of the problem, a hard-margin SVM should be used since errors
in the definition of the frontier at a given step of the dynamic system induces control
errors at the next steps.

1.2 Organisation of the paper

The next section defines the problem we want to solve : we point out the effects of bad
kernel hyper-parameters. In the following section, we focus on the hard-margin setting
and propose the hard-margin BALK. The fourth section extends the results to soft-
margin setting with the soft-margin BALK. In the fifth section we provide experiments
on artificial datasets in 2 and 3 dimensions as well as results on viability kernels and we
show the advantages of using our algorithm. This section reports preliminary results on
general datasets, with examples that are not coordinates on a grid but images.



BALK-SVM

2 Learning on partial grids
As mentioned before, we are interested in learning shapes from points located on

regular grids. In this kind of problem, one can access to any point on the grid. However,
most of time, asking for a label is expensive. This is the reason why active learning is
here a method of choice. For SVM, it is easy to implement simple heuristics to achieve
active learning. The most used one is probably the one consisting in using points only if
they fall inside the current margins. For illustration purposes and study of the problem
only, we reproduce the effects of the active learning scheme with a very simple rule :
only points that have an opposite-class neighbour at a distance less than 2

√
Dε are

eligible for training the SVM. This is the incomplete grid, obtained by filtering all points
far from the frontiers. This is not meant to be real active learning, but only to illustrate
the holes problem.

2.1 SVM and kernels
We briefly recall here the SVM decision function. For further reading we propose

Burges (1998). Let xi, i ∈ [1, `] be the training points and yi, i ∈ [1, `] the associated
labels. The SVM function is expressed as the linear combination of elements of the
kernel : f(.) =

∑
i αiyik(xi, .) and the decision function is D(.) = sign(f(.) + b)

where b is the bias. We now look at the kernel. Since data is located on a grid, the
euclidean distance is a relevant information and this is the reason why we work on local
kernels such as the Gaussian kernel For this kernel, the only hyper-parameter is the
bandwidth σ.

Gaussian k(x, y) = exp
−‖x− y‖2

2σ2

2.2 When do holes appear ?
Holes can be separated in two categories, depending on their nature. We describe and

explain both in the next paragraphs.

2.2.1 Lack of decision

The first one, which is also the easiest to deal with, is due to a lack of decision is some
regions of the space. For radial kernels, it is a fact that far from the support vectors,
decision is based on constant b since :

lim
‖xi−x‖2→∞

k(xi, x) = 0 ⇔ lim
‖xi−x‖2→∞

f(x) = b (1)

Increasing σ increases the distance between support vectors and bias decision. Hence
a good way to prevent holes is to maximise σ. It is possible to compute the differential :

∂f

∂x
=
∑̀
i=1

αiyi
σ

‖x− xi‖
σ

k(xi, x)
(xi − x)
‖x− xi‖

(2)



CAp 2008

From this expression, one can evaluate how many support vectors xi significantly
influence a given point x (see Bengio et al. (2005), section 6.2 for details). They are
those for which ‖x−xi‖

σ k(xi, x) is less than 2. This is useful to define, after learning, an
area where the decision can be trusted regarding this first category of holes.

2.2.2 Geometry of the problem

The second category of holes is closely linked to the geometry of the problem. Hence
it is hard to know in advance if there can be some. However, we can characterise the
mechanism that plays here. In a problem where the geometry requires a lot of flexibility
but the kernel bandwidth is large, some αi become so large that the influence of the
support vector goes much further than the others. This influence is totally compensated
by several support vectors of the opposite label but further, it is not constrained by the
data. We illustrate this on a very artificial problem on figure 1. We see that each positive
(cross) support vector is compensated by at least 2 negative (circle) support vectors so
that the decision is locally good even though the kernel bandwidth is large. For some
regions that are further away, the positive support vectors are more influencing than
the closest training points and we observe that the decision changes with no point to
support this change. This creates a hole.

For αi with smaller values this doesn’t happen because the influences remain local.
The values of αi is related to the bandwidth value through the kernel. The higher σ,
the higher αi. So to avoid holes, we need reduce σ so that αi remain in a reasonable
range of values. Remark that this problem doesn’t occur when using soft-margin with
small C. For this category of holes, we want to limit αi, which can only be obtained by
minimising σ in the hard-margin setting.

2.2.3 Objective

Our point in this article is to provide a practical solution to avoid both holes. It is
obvious that choosing a good kernel bandwidth is the key. However we wish to propose
a method that does not require to test several values in order to choose the best one,
retraining the SVM many times. In the specific problems we are interested in, holes
errors are far more important than errors near the real frontier. Indeed, the precision of
the results are given by the precision ε of the grid. Hence we propose to evaluate the
quality of the solutions based on the absence of holes first and then on the generalisation
error. We consider all solutions without holes. Among all, the best one will be the most
regular one (which is likely to be the sparsest). Therefore, we want to select the largest
bandwidth with no holes.

The most basic method to automatically set the kernel bandwidth consists in running
several SVM with different bandwidths and selecting the best one. Differences between
methods lie in the choice of the range of value and the criteria to evaluate the results.
Some more sophisticated methods use gradient to find the next hyper-parameter va-
lue Cristianini et al. (1999); Keerthi et al. (2007). This is fine when it is reasonable to
run several instances. However it is not always the case, in particular for large datasets
like grids in high dimensions. Recently, Wang et al. (2007) proposed a regularisation



BALK-SVM

FIG. 1 – We draw HM-SVM frontiers for different bandwidths. Holes appear for σ
larger than 4 and we see that max(αi) are larger and larger when σ increases. This very
simple case is constructed to illustrate the problem.

path for the kernel bandwidth. Others methods are using multiple kernels (Rakotoma-
monjy et al. (2007)). An other approach (Burbidge (2002)) proposes to select the kernel
bandwidth during training, similarly to what is presented here. The bandwidth is esti-
mated from the median minimal distance between positive and negative support vectors.
Hence the method consists in running the SVM and changing the bandwidth every h
steps according to the current support vectors. This method is not applicable on a grid
since the estimated bandwidth is likely to be ε at each step.

3 Hard-margin BALK

3.1 Formalisation

Small bandwidth σ leads to bias holes and high number of support vectors. Large
bandwidth σ leads to less flexibility and implies large values of αi obtained during
optimisation. In soft-margin setting, the lack of flexibility for large bandwidths is com-
pensated by the regularisation term C, which limits possible values of αi. Our idea is to
apply this limitation while keeping the hard-margin setting. If we impose hard-margin
and a bound on αi, the only way to ensure a feasible solution is to make σ a free va-
riable of the problem. However, this variable is embedded in the kernel and it is hard to
optimise directly on it. We want to optimise over σ : given C, find the largest σ leading
to a zero training error. This way, we benefit from the C bounding while keeping the
hard-margin restriction. This is expressed in system 3 and its dual form 4.



CAp 2008



max
σ

σ

s.t.
∑̀
i=1

ξ̃i = 0

with ξ̃ = argmin
f,b,ξ

1
2
‖fσ‖2 + C

∑̀
i=1

ξi{
s.t. yi(fσ(xi) + b) ≥ 1− ξi;
and ξi ≥ 0; i = 1, `

(3)

The dual form is :

max
σ

σ

s.t. α̃i < C ; i = 1, `

and α̃ = argmax
α

−1
2
α>Gσα+ α>1{

s.t. y>α = 0
and 0 ≤ αi ≤ C; i = 1, `

(4)

with Gσ(i, j) = yiyjkσ(xi, xj)

3.2 The algorithm
There are several ways to solve system (4). The most straight forward way simply

consists in alternating steps, starting from a small σ (which can be set easily as much
smaller than the grid precision) and increasing it as long as no αi reaches C. However
this does not bring anything from a complexity point of view and it is basically a line
search. Moreover, this process starts from the largest solution in terms of support vectors
and cannot be applied to large datasets. We propose to change of point of view. Instead
of increasing σ as long as the solution match the constraints, we decrease it as long as
the constraints are violated, starting from a large σ. By formulating the problem this
way, we face two questions : 1/ how to initialise σ0 so that σ0 > σoptimal ? 2/ how to
discard σ efficiently if it is too large ?

3.2.1 How to initialise σ0 ?

The first question can be addressed when points are located on a grid. Indeed, we
know the distance between points and we can use it to evaluate the locality of a kernel
for a given bandwidth. The kernel value between two points represents their proximity.
In the SVM function, the kernel values are computed between a support vector and an
other point. There, this value can be interpreted as the proportion of the αi allowed
to influence the second point. We consider here the "allowed influence" of a support
vector on its direct neighbours which are at most at a distance of

√
Dε where D is the

dimension of the space containing the grid.
Let kmax be the maximal acceptable kernel value for two neighbours. It is necessa-

rily between 0 and 1 since the studied local kernels lie between 0 and 1.



BALK-SVM

‖x1 − x2‖2 = ε2D (5)

k(x1, x2) ≤ kmax (6)

For Gaussian kernel :

σ ≤

√
−ε2D

2 log(kmax)
(7)

influence k σ Gauss.
0.5 0.8493

√
Dε

0.75 1.3183
√
Dε

0.95 3.1222
√
Dε

0.99 7.0533
√
Dε

Even though it’s not obvious to fix kmax a priori, we observe that the magnitude of
σ lies between 0.8

√
Dε and 7

√
Dε. Expressing the kernel bandwidth this way presents

the advantage to automatically taking into account the dimension and the precision of
the grid. We fix σ0 = 7

√
Dε.

3.2.2 How to discard σ efficiently ?

We claim here that we don’t need to solve entirely each SVM before discarding it.
Indeed, as soon as a support vector is bounded, we know the hard-margin constraint
is violated and we can stop this optimisation and decrease σ. We propose the HM-
BALK (Hard-Margin Bandwidth Autosetting SVM for Local Kernels), based on the
SimpleSVM solver (see appendix 6). Since the SimpleSVM makes a full optimisation
of the current set of support vectors at each step, bounded support vector are quickly
found. Moreover, the worst classified points are added first to the set of support vectors,
hence potentially bounded support vectors are treated first.

3.2.3 Implementation details

From the original algorithm, the projection step is modified. In the SimpleSVM pro-
jection step, the current solution is projected inside the admissible set if constraints
(0 ≤ αi ≤ C) are violated and the violating point is removed from the working group
Iw. In BALK, we still project the solution when αi < 0 but not if αi > C : any time a
support vector gets a αi larger than C, the bandwidth is reduced and the violating point
remains in the working group (see algorithm 1). To do so we define a simple decrease
rule : σ = max(σ− δ ∗ σ, 10−3) with 0 < δ < 1. One can imagine other rules here but
this simple one already turns out to give good results.



CAp 2008

Algorithm 1 HM-BALK
Input : data x, y, C
Initialise Iw ← i, j with yi 6= yj .
repeat

Compute αIw

if ∃αi ≤ 0 then
Project solution in the admissible set, remove i from Iw

else if ∃αi ≥ C then
Reduce bandwidth σ = max(σ − δ ∗ σ, 10−3)

else
Select next point to add to Iw

end if
until No point can be added to Iw

4 Soft-margin BALK

In practice, labelling errors can occur and for this reason, we need to provide a soft-
margin version of BALK. Another motivation is that we plan to extend BALK to non
grid datasets (see section 5.3) which are often noisy. Generarely, extending SVM from
hard-margin to soft-margin consists in tolerating errors for training points, which is
equivalent to putting a bound on the Lagrange multipliers associated to the support
vectors. The problem here is that we already put such a bound on αi to reduce the
bandwidth. We designed the SM-BALK (Soft-Margin BALK) such that αi are double
bounded. In a first step, they are bounded by C2 in order to autoset σ and in a second
step, they are bounded by C1 ≤ C2 corresponding to tolerated errors.

min
f,ξ,b

1
2
‖fσ?‖2 + C1

∑̀
i=1

ξi

s.t. yi(fσ?(xi) + b) ≥ 1− ξi; i = 1, `
and ξi ≥ 0; i = 1, `
with σ? = argmax

σ
HM-BALK(C2)

and C1 ≤ C2

(8)

Values for C1 and C2 can be significantly different since they are not linked to the same
aspect of the learning task. C2, for bandwidth adjusting, can be large while C1, for
regularisation, can be relatively small, similarly to what is usually done.

4.1 The algorithm

The idea is to combine two behaviours in order to solve only one SVM. We monitor
αi values. Anytime one reaches C2, the bandwidth is decreased. If all are under C2,
we check if one reaches C1. If so, the point is bounded. Doing so, we combine the two
objectives (autosetting the bandwidth and tolerating training errors) at the same time
(see algorithm 2).



BALK-SVM

Algorithm 2 SM-BALK
Input : data x, y, C1, C2

Initialise Iw ← i, j with yi 6= yj .
repeat

Compute αIw

if ∃αi ≤ 0 then
Project solution in the admissible set, remove i from Iw and put it to I0

else if ∃αi ≥ C2 then
Reduce bandwidth σ = max(σ − δ ∗ σ, 10−3)

else if ∃αi ≥ C1 then
Project solution, move i to IC and remove it from Iw

else
Select next point to add to Iw

end if
until No point can be added to Iw

4.2 Comments on the complexity of BALK

Our method enables to set the SVM bandwidth during learning. Compared to cross
validation or other external loop based method, BALK has one level of complexity less.
However, this has obviously a cost on the SVM. The main over-cost is the need for
re-computing kernel elements when changing the bandwidth. The overall complexity
of BALK is somewhere between the classic SVM without kernel caching and SVM
with kernel caching. Experimentally, we observed that the overcost is relatively low, as
shown on figure 2 for a series of experiments for datasets from 600 to 10000 points (ge-
nerated as described in the next section). On this figure we report HM-BALK training
time and the equivalent HM-SVM trained with the BALK selected σ.

5 Experiments

We tested both versions of BALK on artificial and real datasets. We present here
results in 2 and 3 dimensions for visualisation purposes and up to 6D grids.

5.1 Artificial datasets

Artificial shapes are generated based on simple rules. We first create a complete grid.
Then we pick a few random points in the space. Then, for each point of the grid, we
compute the sum of the distance to its closest neighbours among the random points. If
the results is above a threshold, the label is positive, otherwise it is negative. This way
we can generate arbitrarily smooth or complex shapes in any dimensions, depending
on the number of random points and neighbours, and arbitrarily large or small shapes
depending on the threshold. Keeping the random points in memory let us test any point
of the space if needed. The incomplete grid is obtained by removing from the database
all the points that don’t have an opposite neighbour at a distance of at most 2

√
Dε.



CAp 2008

FIG. 2 – Training time comparison between BALK and SVM trained with BALK selec-
ted σ, both in hard margin versions. We give average training time for each dataset size
on 20 runs. The variance on the results is negligible. Results are shown relatively to a
baseline of 1 sec. of training for SVM corresponding to x sec. for BALK. Datasets are
generated as described in section 5 in 2 dimensions. In the first group, dataset contain
441 points. The others have respectively 676, 1156, 2601 and 10201 training points. We
see that the relative overcost decreases when the database increases.

5.1.1 Holes

Figure 3 shows the effect of a too large bandwidth and what we obtain by using the
HM-BALK. The complete grid in 3D contains 1331 points and it remains around 867
after filtering. The cost of the first result would be 1 and the second would be 0.

FIG. 3 – Results of hard-margin SVM with a too large bandwidth (left) and the autoset
bandwidth (right). A "large α hole" is present on the left, not on the right.



BALK-SVM

FIG. 4 – Comparing results between automatic setting (left figure), setting chosen based
on the test of a range of values (right figure) and the real shape (middle one).

5.1.2 Shape approximation

Figure 4 compares the obtained results between the HM-BALK and an external loop
for evaluation. We also provide a visualisation for the real generated shape. We observe
that both give similar results.

5.1.3 When the grid dimension increases

In this series of experiments, the still use the shape generator to create databases.
We run systematically the HM-BALK on datasets of increasing dimensions, from 2D
to 6D. For each dimension, we generate 20 shapes to learn. Databases contain from
1000 to 4000 training points. On figure 5 we show the average results for 3 learning
schemes. The first bars are the results obtained by HM-BALK with C = 20000/D and
σ0 = 7

√
Dε. The second bars are the results obtained by a range search (from σ = 0.8

to 7
√
Dε) with hard-margin SVM, taking each time the σ giving the lowest error rate

on a test set. The third bars are the results obtained as the second ones but selecting
the largest σ for which no hole is detected on a test set. Error rates and holes detection
for all experiments are obtained by testing points of a regular grid of smallest precision
εt = 0.8ε.

From these experiment, we observe that BALK is able to provide stable results, as
good as a line search can do. Moreover, solution sizes stay is reasonable proportion
of the training size. However, we cannot guaranty that no hole of the second category
appears and it happens for some configurations. We can only say that the smallestC, the
fewer holes. Having said that, it turns out that for those experiments, holes are avoided
in more than 99% of the cases. We also see that expressing σ depending on the grid
dimension and precision effectively permits to set σ independently of the grid.



CAp 2008

FIG. 5 – This figure shows results for grid dimensions from 2 to 6, and training sizes
from 1000 to 4000 points. The top bars are the average error rates. The middle ones
are the average proportion of support vectors. The bottom ones are the average selected
σ. For each, the first bars report results of HM-BALK with C = 20000/D and σ0 =
7
√
Dε, the second bars are given by selecting σ with the lowest test error rate and the

third bars are obtained by selecting the largest σ for which no hole is detected on a test
set. For second and third bars, we chose σ in [0.8 : 0.6 : 7].

5.2 Viability kernel datasets

Datasets used here are generated from the problem called car on the hill. It is a cap-
ture basin problem, i.e. the goal is to reach a target while staying in the admissible
constraints and it can be seen as an extension of viability problems (see Chapel & Def-
fuant (2007) for more details). The two dimensions of the grid are the position and the
velocity of the car. The question is "what are the starting points in the space of the grid
for which the car can reach the top of the hill (the target) in a given time t ?" The general
algorithm is roughly as follows :

– start from the target and put all points inside the target as positive examples, others
are negative

– learn the SVM function f(x)
– make a control step based on f(x) which determines which negative points can

reach the positive target in a given time step
– start again with the current obtained labels until the accumulated time step makes
t

At each iteration of the algorithm, the quality of the learned SVM conditions the
quality of the control and all errors are cumulative. We show on figures 6 how we
can improve the quality of the results by using better setting of the kernel. For this
experiment, we asked the practitioner to provide the obtained database for each step of
the dynamic resolution of the car on the hill, with 10000 points on the 2D grid. We also



BALK-SVM

asked for the SVM used setting in order to be able to reproduce the results. Soft-margin
SVM with largeC are used in this application in order to smooth results since there may
be some labelling errors. Then we applied SM-BALK on each database (representing
each step) to compare the frontiers. On figure 6, we draw only the obtained frontier of
each step and the bounded support vectors. The top figure shows the practitioner SVM
(C = 30000, σ = 15.8

√
Dε) and the bottom one the SM-BALK results (C2 = 30000,

C1 = 5000). This example is particularly interesting for illustration purposes. Indeed,
we see that the practitioner guess leads to solutions with many bounded support vectors.
However we know that for those viability problems, the precision of the frontiers are
decisive for the labelling of the next step and for the control. Hence using BALK in
this context would greatly improve the precision of the dynamic process. Let us note
here that we could not test the impact of BALK over several steps since the provided
software for this problem is not yet able to use different bandwidth at each time step.

5.3 Application to non grid datasets

In this section we present some results obtained on images dataset : the USPS dataset.
This dataset contains 7291 training examples in dimension 256 (images of 16 × 16
pixels, grey levels) and 2007 testing examples. Those data is not located on grids hence
we face the problem of setting the first σ value. We use a simple heuristic which consists
in computing the average euclidean distance d between examples of opposite classes,
selected randomly. We set the initial σ to σ0 = 2d. With the soft-margin BALK, we
easily obtained error rates close to those reported in literature for Gaussian kernels on
the non modified database, down to 4.2%. Therefore we also studied the effect of the
choice on the C2 value. It turns out that this method doesn’t seem to be too much
sensitive to it (the error rates goes from 4.2% to 5% when varies from 50 to 5000).
However we still need to make this choice more reasonable and this point is under
current research.

6 Conclusion

We have presented a novel algorithm that autosets the local kernel bandwidth of the
SVM. This algorithm called BALK is dedicated to problems where data is coordinates
on an incomplete grid. We have given various examples of applications in 2 and 3 di-
mensions for grids, approximating shapes and viability kernels. There remains the set-
ting of C to investigate. The influence is limited for our task since we are not trying to
obtain the lowest test error but only to avoid holes while keeping the solution sparse en-
ough. From our observations, it appears that preventing αi from being larger that 5000
is enough. However, a more prudent policy could set smaller C. Moreover, preliminary
results indicate that it could be applied to general datasets as well. This last assump-
tion requires more tests and justifications and is the subject of current research. A lousy
argument in favour of this generalisation is that maxσ σ is equivalent to maxσ ‖fσ‖2.



CAp 2008

Practitioner setting

Automatic setting with BALK

FIG. 6 – Comparing results between practitioner guess setting (top figure) and automa-
tic setting (bottom figure) for several steps of a viability kernel approximation problem.
The represented points are only the bounded support vectors. Recall that this problem
is theoretically separable and should not need such points. However the control step is
submitted to imprecision problems and may induce wrong labels. The first figure shows
many bounded support vectors, hence many potentially misclassified points. The effect
is that frontier may be far away from the real one. Such errors imply control errors at
the next step. We see that the BALK leads to far better results.



BALK-SVM

Références

AUBIN J.-P. (1991). Viability theory. Cambridge, MA, USA : Birkhauser Boston Inc.

BENGIO Y., DELALLEAU O. & LE ROUX N. (2005). The curse of dimentionality for
lacal kernels machines. Rapport interne.

BURBIDGE R. (2002). Adaptive kernels for support vector classification. In MSRI-
Workshop on non-linear estimation and classification, Lecture notes in Computer
Science : Springer-Verlag.

BURGES C. (1998). A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2), 121–167.

CHAPEL L. & DEFFUANT G. (2007). SVM viability controller active learning : ap-
plication to bike control. proceedings of the IEEE International Symposium on Ap-
proximate Dynamic Programming and Reinforcement Learning.

CRISTIANINI N., CAMPBELL C. & SHAWE-TAYLOR J. (1999). Dynamically adap-
ting kernels in support vector machines. In Proceedings of the 1998 conference on
Advances in neural information processing systems II, p. 204–210, Cambridge, MA,
USA : MIT Press.

DEFFUANT G., CHAPEL L. & MARTIN S. (2007). Approximating viability kernels
with support vector machines. IEEE Transactions on automatic control, (52), 933–
937.

DEHEEGER F. & LEMAIRE M. (2007). Support vector machine for efficient subset
simulations : 2smart method. In Proc. 10th Int. Conf. on Applications of Stat. and
Prob. In Civil Engineering,ICASP 10.

KEERTHI S. S., SINDHWANI V. & CHAPELLE O. (2007). An efficient method for
gradient-based adaptation of hyperparameters in svm models. In B. SCHÖLKOPF, J.
PLATT & T. HOFFMAN, Eds., Advances in Neural Information Processing Systems
19, p. 673–680. Cambridge, MA : MIT Press.

LAGOUDAKIS M. G. & PARR R. (2003). Reinforcement learning as classification :
Leveraging modern classifiers. Proceedings of the 20th International Conference on
Machine Learning (ICML-03).

LOOSLI G. (2004). Fast svm toolbox in Matlab and Octave based on SimpleSVM
algorithm. asi.insa-rouen.fr/~gloosli/simpleSVM.html.

RAKOTOMAMONJY A., BACH F., CANU S. & GRANDVALET Y. (2007). More effi-
ciency in multiple kernel learning. In ICML ’07 : Proceedings of the 24th internatio-
nal conference on Machine learning, p. 775–782, New York, NY, USA : ACM.

VISHWANATHAN S., SMOLA A. J. & MURTY M. N. (2003). SimpleSVM. In ICML,
p. 760–767.

WANG G., YEUNG D.-Y. & LOCHOVSKY F. H. (2007). A kernel path algorithm for
support vector machines. In ICML, p. 951–958.



CAp 2008

Appendix

SimpleSVM
We briefly recall here the dual problem and the SimpleSVM solver Vishwanathan

et al. (2003); Loosli (2004). The dual problem of the SVM is as follows :8><>:
max
α∈Rn

−1

2
α>Gα + 1>α

y>α = 0
0 ≤ αi ≤ C i ∈ [1, ..., n]

(9)

where G is the kernel matrix such that Gij = yik(xi,xj)yj . The SimpleSVM solver
uses groups of points :

• I0 for non support vectors : αi = 0
• Iw for non bounded support vectors : 0 < αi < C
• IC for bounded support vectors : αi = C

Each step of the SimpleSVM consists in defining the groups and solving a linear
system to compute αi in group Iw only.


